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A hybrid numerical scheme is presented for use on two-dimensional, incompressible flows 
of low viscosity. The scheme divides the domain D inro two regions, D, and D, , and the 
Navier-Stokes equations are solved by different methods in each. In the region D, ~ which 
is composed of a narrow strip adjoining the boundary, the grid-free vortex method is used. 

An alternating direction implicit (ADI) method is used in the interior domain D, which 
contains that part of D that lies a short distance away from the boundary. The hybrid 
method allows vorticity exchange between the two regions by partially merging and re- 
aligning them. Boundary conditions for the vorticity are automatically treated by the 
vortex method. Favorable numerical results have been obtained for the problem of re- 
circulating flow in a square cavity for Reynolds numbers of 400 and 1000. 

I. INTRODUCTION 

Much of the numerical work on the Navier-Stokes equations has been done by 
approximating the partial derivatives in the equations of motion by finite differences. 
Since the interesting phenomena occuring’in fluids of low viscosity initially appear 
in regions of small area, it has been difficult to produce reliable results for problems 
with high Reynolds numbers. 

The difficulty arises because the finite amount of space available in the computer 
restricts the number of grid points that can be used in the calculation. An e-Fecective 
upper bound is placed on R, the Reynolds number, since analysis implies that several 
grid points must be placed within the boundary layer whose thickness varies as 
O(R-Ii”). This problem is especially important in cases dealing with flows in wakes 
or separated flows when the initial boundary layer may not be visible to a coarse. 
finite difference grid. 

Another drawback of finite differences is that in areas near the boundaries sharp 
gradients give rise to large truncation errors which may swamp the original approxi- 
mation. The problem may be further complicated by the truncation errors causing 
a numerical viscosity to form which is greater than the viscosity of interest 111. It is 
often difficult to predict when difference methods go awry 121. They can easily give 
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incorrect solutions without signalling that further resolution is required. AlI of these 
drawbacks have led some researchers to construct other numerical schemes suitable 
for use in flows with high Reynolds numbers. 

However, difference methods continue to enjoy a great popularity because of their 
usual reliability and the wide experience that people have with them. They can be 
successfully used in areas where greater resolution is needed by using a variable mesh. 
Another approach is to use coordinate scaling if it is expected that a greater variation 
will occur in one direction than in another. Some limitations of these remedies are 
that they are difficult to implement in areas other than those adjoining flat 
boundaries, and that one must have a priori knowledge where greater resolution 
is required. 

A different approach is the grid-free vortex method proposed by Chorin [3]. The 
vortex scheme replaces the vorticity in the fluid and adjoining the boundary with 
vortex blobs of small but finite support. The equations of motion are solved by 
following the blobs throughout the fluid with a random motion added to mode1 the 
viscous diffusion. The scheme has been successfully programmed both for exterior 
time dependent as well as interior steady-state flows [3, 4, 51. However, experience 
has shown [5] that convergence is often slow. The increase in precision is obtained 
with the use of more vortex blobs which places a greater demand for storage. Since 
computation time is proportional to the square of the number of blobs, this gives 
rise to longer run times. 

The following proposal attempts to avoid some of the limitations of the two 
methods. In areas adjoining the boundaries, the Navier-Stokes equations are solved 
by means of the vortex method. Away from the body, where viscous effects are small, 
the equations are solved by a well known alternate direction implicit (ADI) scheme 
[6]. The hybrid method is tested on the problem of computing the steady-state flow 
inside a square cavity when one of its sides slides in its own plane with constant unit 
velocity (see Fig. 1). 

In Section II and its subsections, the hybrid scheme is developed. The subsections 
are devoted to describing the various independent components of the method: 
the vortex-method, the finite difference method and the problems associated with the 
interfacing of the two. Section III gives a short synopsis of past work on the square 
cavity problem. Section IV describes the numerical performance of the proposed 
method while Section V is a discussion of results. 

II. HYBRID NUMERICAL SCHEME 

The equations of interest are the non-dimensionalized Navier-Stokes equations 
for two-dimensional, incompressible flow, written in the vorticity transport form: 
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where 

u = (u, 0) = velocity vector, 

R = Reynolds number, 

E = curl u = vorticity. 

Since u is two-dimensional, e is treated as a scalar. 
Consider, in particular, the problem of computing the steady-state velocity field 

inside a unit-square cavity (Fig. 1). Initially the fluid is assumed to be at rest. At 
t = 0 the top edge is made to slide in its own plane inducing a constant, tangential 
unit velocity along that side. 

:1,1) 

u = (0,O) - 

(130) 
x 

FKG. 1. Domain of interest and boundary conditions. 

Let D denote the domain in which (1) and (2) are to be solved, and G denote the 
boundary of D. Express D as the union of two mutually disjoint subsets D, and D, . 
Let D, represent that part of D which lies a distance 6 away from 6, and D, the 
remaining strip separating the boundary from D, (see Fig. 1). 

If tnS represents the vorticity at the mth time step, express this as a snm of two 
functions, 

fi”l represents the vorticity [” restricted to the subset Di , that is 

The time advancement of p is done by two distinct methods. In the region D, ) 
the one adjacent to the boundary where sharp gradients occur, P (== 4?n) is repre- 
sented by a collection of vortex blobs [3]. The field tl” is advanced by moving each 
vortex according to the inviscid equations, while the diffusion is accomplished in the 
mean by giving each a random displacement. In the interior region D, , vorticity is 
represented by 521n9 a function specified by its values on a computational grid. The 
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equation of motion (1) is solved by finite difference approximations of the derivatives 
and using an ADI scheme to calculate the time advancement. 

After the functions TV and &;m are advanced forward, they may no longer satisfy (3). 
Some of the vortex blobs making up E,” now lie in D, while the grid function Eznz 
has smeared over into D, . At this stage a “clean up” is made. Blobs in D, are inter- 
polated onto the AD1 mesh. It will be shown that a judicious choice of the time 
step will allow vorticity originally in D, to travel no more than a specified distance 
which is chosen to be less than 6, the distance from D, to G. The vorticity which has 
been convected or has diffused from D2 into D, is “remembered” on an “expanded” 
mesh. This vorticity is coagulated into new vortices; E.q. (3) is satisfied and the time 
step is completed. 

A. Vortex method 

This section briefly lists the pertinent equations of the vortex scheme [3]. 
Express 81” as a collection of vortex blobs, 

where 

&Yr> = C L&O - 5”). 
j 

rg = 1 r 12, and rjm = (Xj”, ~7~~~) gives the location of the jth blob at the mth time 
step. The symbol CT denotes the “cut-off length” [3]. 

The function t<n generates a stream function z/In and a velocity uln: 

(4) 

(5) 

where 

#,, is made continuous by the addition of a constant. Since uO does not satisfy any 
boundary conditions neither does u1 . 

Before advancing llm, the function urn must be evaluated, where u’” denotes the 
velocity due to all the vorticity in D. The velocity induced by the interior vorticity, 
tern, is denoted by us” and satisfies 

curl uppn = 5,” in D, 

4 m * u rzz -ulm * n at G, 

when n is the unit normal vector along G. In the present context, ugTn is constructed 
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with the aid of another stream function Q!J~*~~. One solves the potential equation: 

with the boundary values, 

along 6; 

where &Iii is given by (4). Then 

Along and near the boundary the source term in (6) is zero. This avoids the usua’i 
difficuhies that finite difference methods have in resolving sharp gradients of the vor- 
ticity for large R. 

In the computer program, (6) is solved by finite differences with the aid of a fast 
Poisson solver [7]. The computed grid values are then approximated by a bi-quadratic 
spline function similar to that given by Buneman [X]. The spline is defined by sphne 
coefficients which are stored over the old function values. These coeificients are com- 
puted by solving a linear system which arises when the spline is made to return the 
original grid values of $r2 when the spline is evaluated at a grid point. Additiona: 
requirements require knowledge of the normal derivatives at the boundary. Approxi- 
mations to these derivatives are obtained by discretizing (6) at the boundary and 
using a “mirror image point”. This approximation is correct to first order in the mesh 
size. An alternative would be to use backward differences. The advantage of the sphne 
is that its derivatives becomes continuous functions which approximate u2 and can 
be evaluated anywhere inside D, . 

The definition 

generates a velocity which has no normal component at G. 
The function fl” is advanced as in [3]. If k is the time step and (.u,‘~~, yin?) the position 

of the ith blob, then 

Equation (5) is used to evaluate ulln, with the proviso that there be defined a small 
p < CJ such that 

%W = 0, for Y < p. 

This p is necessary in order to avoid a ‘“self force” of the blobs. The random variable 
q = (Q , ~3 has a Gaussian distribution with mean zero and variance 2k/R, and solves 
the diffusion equation: Et = R-l 85 in the mean. 
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The tangential boundary component is cancelled as in [3]. The vorticity at the 
boundary is approximated by the formula 5 = -&,u and this amount is generated 
in a thin boundary layer along G to perform the cancellation. The length of G is 
broken up into segments of length h; this thin layer is combined into new blobs, 
and is allowed to diffuse by means of a random displacement. This process also defines 
the “cut-off” length u = 12127~. The completion of the time advancement of &Wa 
creates a new field ET+‘,* which has spread beyond the region D, . It is surprising 
that although the above approximation is inaccurate in the presence of separation 
or in corner regions, the vortex method can describe those flow configurations (see 
[3] and below). 

B. Finite D@esence Scheme 

In the interior region, and ADI scheme is used to advance eZFn. Let Sri represent 
the grid values of fZ n. The ADI scheme alternatively solves 

Unnecessary subscripts have been suppressed; D,(, D,,c etc. represent the usual 
divided differences of 5. 

Before (8) is implemented the velocity urn must be tabulated at each grid point 
where (8) is used. The function uZm is calculated by taking divided differences of the 
solution of (6). The contribution due to vortex blobs, uimn, is not computed by means 
of (5), since this would involve a large amount of computer time. Instead one solves 

A#, = 0 in D, (9) 

with boundary values on D2 computed with (5). The source term here is null because 
of (3). Equation (9) can be solved by any standard method such as cyclic reduction, 
if D2 is rectangular. Divived differences of the computed values later yield ulrn at the 
grid points. 

C. Boundary Corfditions for the DifSerence Scheme 

The ADI scheme (8) is used in its unaltered form at points making up the boundary 
of D, . The implicit nature of the ADI method necessitates specifying values for 
gn+1,/2, g+1 at grid points lying outside DB . These values are obtained by allowing 
the computational mesh covering D, to “expand” one mesh width each half time 
step. 

Equation (8a) is solved successively by rows. Because only derivatives in the x-direc- 
tion are discretized implicitly, each row of the mesh generates a trigiagonal system 
of linear equations. Grid values of f2 ‘WW lying two or more mesh widths away from 
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D, are set to zero. This assures that the number of unknowns matches the number of 
equations and restricts vorticity in D, from traveling more than one mesh width 
in a time duration of k/2. 

Vorticity from D, can travel out in only two ways, by convection or by diffusion. 

It can be assured that ce is not convected beyond one mesh width when k satisf;es 
a CFL type limitation, 

k 
j/ u llms - d d. 2 

(;,Oj 

Diffusion is equivalent to random motion. According to Chebyshev’s theorem [9]: 
realizations of gaussianly distributed random variables xi11 rarely be greater in 
magnitude than three standard deviations. To be more precise [lo, 111, the probability 
that a random displacement is greater than h standard deviations is exp(--,‘lZ/3j. 
This gives a value of 0.011 when h = 3, and 1.5 x 1O-5 when h = 6. During a time 
step of duration k, vorticity will diffuse with a standard deviation of (2k/,%j1;Z. Hence, 
in a time step of length k/2, cl, will rarely travel beyond one mesh width if 

3(k/R)1:2 < d, (11) 

The solution of @a) is the function fZ “‘+‘P which has spread one mesh width beycnd 
I& . Equation (8b) is solved similarly. The resulting tridiagonal systems are solved 
successively by columns. The function ec” 1s set to zero for grid points lying more 
than two mesh widths away. This is justified by the same reasoning as above. The 
result of these two half steps generates a function (?+I** which has spread over two 
mesh widths into the region D, . 

1. tI flow from D, into D, . The time advancement step (7) scatters the vorticity 
f1 throughout D. As in [3]: blobs displaced outside D are discarced; however, v&city 
carried by blobs that have entered into D, must be interpolated onto the finite 
difference mesh in order to satisfy (3). The replacement of vortex blobs by grid vatues 
is done by linear interpolation. Two considerations arise. First, no vorticity should 
be created or destroyed. Secondly, the process of interpolation should not disturb 
the fluid, that is, there should only be a small difference between the velocities induced 
by the blob before and after the interpolation. 

In the numerical example, the following scheme was used. -Assume that the vortex 
to be interpolated, 

lies inside one mesh square (see Fig. 2). Horizontal and vertical lines are drawn 
through the vortex center, r flE+l and the ratios of areas of the resulting rectangles to 
the area of the mesh square are komputed, 

A, = (d - x)(d - y)/d2, A, = x(d - jQ/dg, etc. 
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I-----d 

di fference 

FIG. 2. Area weighing to interpolate vortex blob onto finite difference grid. 

The A,? are used to compute the new grid vorticities, 

Using the trapezoidal rule for integration, it can be easily seen that no vorticity was 
created or destroyed by the interpolation. 

The above interpolating scheme is equivalent to assuming that the vortex blobs 
have a square base and that the basic blob stream function has the form 

Edx, u> = da 
i 

r (d - I x I)@ - I Y I>, IxLIYI <d 

0, otherwise. 

To perform the interpolation with this blob, one simply evaluates the blob function 
at the grid points. 

It is interesting to note that the above method of interpolating is equivalent to 
Peskin’s delta function technique [12]. However, the support of the discrete delta 
function used above is 4 mesh squares instead of 16 as proposed by Peskin. 

Before using the above linear delta function some experimentation was done with 
other candidates. One such candidate was Peskin’s trigonometric delta function: 

~ij(X, V) = olg(X - xj) g(.Y - Ui) 

g(x) = 
I 
1 + cos y, 1x1 cd 
0, otherwise, 

01 = constant to insure that 
s 

6(x, JJ) = 1. 

This particular interpolating scheme was tested against the scheme described above. 
The test was done by interpolating vortex blobs at several random places in D and 
checking which version produced a velocity field that compared better with the field 
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induced by the vortex blob. The linear scheme compared more favorably and was 
therefore chosen as the candidate for the computer program. 

The subject of interpolating vorticity, or equivalently, charges, onto a computational 
mesh is an interesting topic in itself. Other choices may be easily devised that use 
one mesh point (nearest grid point method) or three, or more. The interested reader 
is advised to consult Eastwood and Hackney [13] for details. 

2. 5, flow from D, into D, . The completion of the ADI step results in an 
“expanded” mesh with vorticity tZ deposited on mesh points outside l& . This vorticity 
must then be rearranged into the form of vortex blobs to satisfy (3). A simple method, 
albeit expensive, is to replace every nonzero vorticity value of tZ outside h), with a 
blob centered on a mesh point. This new blob would have the strength 5;, = d”&,, . 
Unfortunately, this procedure generates too many new vortex blobs per time step. 

In order to minimize the number of newly reconstructed vortex blobs, the 
following simple scheme was devised. 

Assume that only the four neighboring values ci,j , &+l,j , [i+l,j+l and <i,j+l need 
need to be reconverted into a vortex blob. The total volume of vorticity that needs 
to be transferred is ce = (5i.j + ci+l,j + <i+l,iil + &,j+,) d”. These four grid values 
are combined into one blob centered at the center of mass of the four vorticity values. 

Define 1 ce j = 1 <i,, 1 + / &,l,j j + j <+l,j+.l ( + 1 si,j+l /_ Then the center of 
the blob (x, , ye) is 

Ye = 4’i + d(l Si,j+l I 4 I Ci+l,j+l II/l L 0 

(12) 

where (xi , uj) are the coordinates of the point whose grid vorticity value is ii,; I 
This scheme places the center of the new blob inside the mesh square. 

It should be noted that if the four grid values [i,i , &+.l,j, etc. were originally all of 
the same sign, (12) is the inverse of the linear interpolation scheme considered in the 
previous section. 

Many variations of the above are possible. In the numerical problem, the vorticity 
eZ which was to be reconverted into vortex blobs was deposited on two concentric 
square rings enclosing the region D, . The computer program replaced these values 
with a collection of blobs lying at least one and less than two mesh widths away from 
8, ~ For example, consider the four grid values: <i,i , cl+,,j i <ii.l,jGl , <i,j+l; the above 
scheme was used to reconvert the vorticity, 4&f , &+l,j , etc. into one blob lying 
inside a mesh square. The remaining +{i,j vorticity is used in a neighboring cell. In 
the corners, a variation is used to insure that all the vorticity on the expanded mesh 
is reassigned into blob form. 

III. CIRCULATING FLOW IS A SQUARE CAVITY 

Although the hybrid method is designed for use on time dependent problems, it. 
was tested in an asymptotic time sense to compute a steady-state flow. The problem 
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of interest is to determine the velocity field inside a square cavity when one of the 
sides slides in its own plane with constant unit velocity. The resulting flow has many 
interesting features which make it suitable for testing different numerical schemes. 
There are also some experimental results [14] with which the numerical work can be 
compared. 

The essential features of the flow are well documented in the literature (Refs. 
[15-211). The cited numerical work proceeds somewhat differently than here as no 
time dependence is assumed and the steady-state flow is computed by iteration. The 
earliest work by Kawaguti [15] produced good results for small R (R < 64), but 
signalled the difficulty in obtaining large R solutions by failing to converge for 
R = 128. By changing the iteration procedure, Burggraf was able to obtain solutions 
for R as high as 400. It was then discovered that convergence for larger R could be 
obtained by using variations of upwind d.itTerencing [I 7-201. 

The use of upwind differences reduces the accuracy of the difference scheme to first 
order, but makes the linear algebraic equations easier to solve because the diagonal 
terms are increased in magnitude. Greenspan constructed an iterative scheme which 
converged for R as high as lo5 [17]. However, he was primarily interested in obtaining 
a convergent numerical method, and did not display any numerical results other than 
contour plots of vorticity and stream function. Greenspan’s results for a mesh size 
of l/20 do not show any counterrotating vortices and his use of the finer mesh size 
of l/40 is felt to be too crude to adequately resolve the thin boundary layer at the 
high Reynolds numbers. 

Other users of upwind differences were Runchal et al. [18] and Bozeman and Dalton 
[19]. Runchal’s group obtained convergent solutions for R as high as lo* using a 
nonuniform grid. However, this work also only shows contour plots and provides 
no numerical values. Bozeman and Dalton study both types of schemes, central 
differences as well as one-sided, and they use either the convective or the divergence 
form of the equations for the non-linear terms. Their results show that at larger R 
(= lOOO), central differences of the non-linear equations produce linear algebraic 
equations which fail to converge. Problems occur even for one-sided differences. 
For R = 1000, discretizing the convective form of the non-linear terms produced 
an obviously erroneous result, instead of one central vortex, there appeared two large 
vortices of opposite rotation, one lying above the other. 

A recent numerical study of the cavity flow problem was undertaken by Nallasamy 
and Prasad [20]. Their numerical technique [21] also used one sided differences, but 
allowed them to obtain results for R as high as 50,000. They were able to get good 
resolution for mesh sizes as small as l/60, and could observe the variation of the 
secondary vortices with Reynolds number. 

An alternative to finite differences was presented by Rubin and Khosla [22]. Their 
time-dependent approach is based on polynomial spline interpolation. The benefits 
of these methods is their higher order, hence they can produce good results with 
very few mesh points. 
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IV. NUMERICAL RESULTS 

The hybrid method was tested on the square cavity problem. Initially the Auid 
was at rest and the time dependent equations were used to obtain the steady-state 
solution. Numerical results are displayed for the following sets of parameters: 

Mesh size 
R 

Interior Boundary 
Time step Dist(G, l&j 

400 l/32 l/20 0.05 3132 

1000 l/32 l/30 0.07 3132 
l/64 l/30 0.1 4164 

The pictorial output is of the form of Figs. 3-8. The boundaries of the cavity coin- 

.  . .~ . . . -~_I__-_-__-_. .~- . .~ . . . . . .  

- . . . .  . . - . . _ .  .-_.__ _ __\ . .~  _ 

FIGS. 3-8. Velocity plots. Direction of arrows varies as direction of u. Length of arrows is 
proportional to 1 u /1/2= R = 1000, k = 0.1, d = l/64, time step 53. Example of creation of negative 
vorticity by primary vortex. 
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tide with the outside arrows. Each arrow represents the magnitude and direction of 
the velocity at the tail. 

Most of the computation was done for the case R = 1000 and therefore those results 
will be described first. There is little difference between results using an interior 
mesh size d = l/32, or d = l/64. Figures 3-5 are from runs with d = l/64, while 
Figs. 6-7 are with d = l/32. 

In both cases, as the run begins, strong vortices of positive sign are shed from the 
sliding edge to induce a tangential velocity equal to 1. After several steps these blobs 
are interpolated onto the edge of D, where they begin to form a large vortex. This 
central vortex moves toward the cavity center and spirals into its equilibrium position. 

As the large vortex spirals in, it generates a tangential velocity component, u . s, 
which is positive along the four walls. To compensate for this, blobs of negative 
sign are generated at the stationary walls. These blobs are then swept up and pushed 
into the corners. Figure 3 shows one such blob being convected into the upstream 
stationary corner (x, JJ) = (0,O). 

This flow of negative vorticity is responsible for the peculiar loop that the stream 
lines make near the upstream corner of the sliging edge. (Figs. 5, 7). A strong blob 
of positive sign is generated at the sliding edge to satisfy the condition u * s = 1 
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TABLE I 

Comparison for Runs with Different Time Steps and Different Mesh Widths 

l-1,1, k 
I I 

Number of Ti:fle/lteration 
vortices (seconds) I 

K ” n 

lo.1 I 930 I 8.5 

400 l/32 1'"' 

d = interior mesh width 

h = boundary discretization length 

k = time interval 

Number of vortices = approximate 
vortices in 

Time/iteration = running time to 
step 

stable number of 

Cl 

complete 1 time 

; 
,, 

*  . 

. \ 
.r \ 

. . 

FE. 5. Ii = 1000, k = 0.1, d = 164. Average over time steps 201-260. 
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and counteract the inffuence of the accumulated negative vorticity. As this blob 
diEuses into the fluid it generates the counterclockwise rotation in the corner. 

After several time steps the number of blobs present inside the domain D, stabilizes. 
A balance is reached between the number of blobs generated each time step and the 
number lost, either by interpolation onto D, or lost through the boundaries. This 
number has almost a linear dependence on the time step k (see Table I). Decreasing k, 
increases the number of vortices. Apparently each vortex has a finite life span in D, ; 
decreasing the time step allows it to exist for more time steps. Since the number of 
vortices that are generated per step remains the same, more will exist. The computer 
program alters this by allowing vortices to merge when they overlap. At the time that 
the blobs need to be moved, it is necessary to calculate their mutual separation to 
calculate u1 . If that distance is less than a predetermined amount. the two vortices 
are merged and treated as one. The value used by the program is cr/lO, where D 
is the “cut-off length” (see Section I1.A). 

Computation was halted after a visual inspection of the velocity plots showed 
little change from one time step to another. For the case R = 1000, d = l/64, 260 
time steps were run with a time step k = 0.1 The boundary discretization length, 
12, was set at l/30. At the time computation was halted, the center of the large vortex 

FIG. 6. A = 1000, k = 0.07, d = I/32, time step 433. 
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moved in a decreasing spiral about an equilibrium point. The diameter of the last 
circular spiral was approximately 0.05, or 3d. No variation of parameters was done 
fur this case. Some experimentation with difYerent values for h and k was done for 
the case R = 1000, d = l/32 (see Table I). The output shown in Figs. 6,7 used values 
of k = 0.07, h = l/30. It should be noted that changing h, or k between time steps 
does not require any modification of the input vorticity fields. The new run uses a 
different value for 0, but the circulation of each vortex remains the same. 

Figures 4 and 6 are velocity plots after one time step for two different runs. Although 
these plots are representative, there is a variation of the field from one time step tc 
the next. This variation occurs in the interior region, D, as well as in the exterior 
region. In D, , the center of the large vortex moves in a decreasing spiral about 
its equilibrium point. In the exterior region, the vortex method produces observable 
differences in the velocity fields corresponding to different time steps. These differences 
are caused by the random component, present because of the manner in which the 
vortex blobs are diffused. The differences in the velocity fields are especially evident 
in the stationary corners. At times the counter-rotating vortices disappear only to be 
regenerated at later time steps. When these corner vortices disappear, the numerical 
method generates the necessary negative vorticity at the boundary and transports 

.___- ~-_-C--_t-__----_-C_----.~.- -  L 

.  1. 

i i: 

;  /,/F-/----- 

1 ,’ .  (’ ,’ , ,  .x ;  J - .  - 
- - ._ L_ + ._ . \  s 

,  !  ‘ .’ /  , I  . I  /  ,  , ,  - - - .  - . .  c. ‘\ . \  .  

i 1 “ ; _, <I / -., , , - - - . -. .\ ‘\ ‘~ ‘\ \ 

] ; 1 !  ‘ ; (Z ,, , _I / - - - x 

FIG. 7. R = 1000, k = 0.07, d = 1:32. Average over time steps 431460. 
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it to the corners to reestablish the corner vortices. This disappearance and regeneration 
is more frequent for coarser mesh sizes, h and d. 

For a steady-state problem of the type presented here it is possible to obtain details 
of the AOW by averaging over several time steps. Figures 5, 7, and 8 represent the 
velocity fields after averaging. As is evident, most of the noise of previous plots is 
suppressed and the finer details of the flow become apparent. The velocity profiles 
shown in Figs. 9 and 10, and the calculation of the extent of the corner vortex were 
done using the averaged velocity fields plotted in Figs. 5, 7 and 8. 

It is interesting to contrast the performance of the hybrid scheme to the use of 
only the vortex method in the square cavity problem [5]. In the author’s earlier work, 
the velocity fields at any one time step were unrecognizable and only after averaging 
over many time steps could any characteristic features be observed. However, even 
averaging over 320 time steps gave unsatisfactory results. The velocity profiles were 
not smooth and the stream lines had irregularities. 

Besides the case R = 1000, the program was run for R = 400. The interior mesh 
size was kept constant at d = l/32 and some experimentation was done with k and 
h (see Table I). The results depicted in Figs. 8, 9, and 10 use the average of 40 time 
steps. As in the case for R = 1000, varying k affected the total number of vortex 
blobs present in D, , which also affected the duration of each time step (Table I). 
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FIG. 9. Velocity profile of o-component along a horizontal line through the vortex center. 
'3, R = 400; A, R = 1000, d = 11’32; A, R = 1000, n = 1:‘64. 

Figures IO,11 and 12 compare the results of this study with prsvious work. Figure 10 
compares the u-velocity profiles with results of Burggraf 1161, and Bozeman and 
Dalton (BD) [19]. Comparison between the two results of the present work coincides 
with expectations. For larger Reynolds number the velocity profile extends its linear 
behavior closer to the wall implying that the central vortex is more dominant. The 
present results compare tavorably with Burggraf’s for R = 400, but disagree with 
those of BD at R = 1000. No explanation can be given for the latter discrepancy. 
The profile of BD has a smaller slope and turns back to zero earlier as it approaches 
the lower stationary wall. In the limit of inviscid flow in the center, the slope of the pro- 
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FIG. 10. Comparison of velocity profiles of u-component along a vertical line through the vortex 
center. o R = 400, d = 1132 (this study); q , R = 400, Burggraf 1161; A, R = 1000, d = LG4 
(this study); i, R = 1000, Bozeman and Dalton [19]; -. - R - 3c, Burggraf [16]. 
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FIG. 11. Variation in size of upstream corner vortex vs. Reynolds number. I Experimental 
results, Pan and Acrivos [14]; +, Burgraf [16]; 0, Bozeman and Dalton [19]; 8, Nallasamy and 
Prasad [20]; a, this study. 
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FIG. 12. Effect of Reynolds number on the location of the center of the primary vortex. O, 
Burggraf [16]; 0, Bozeman and Dalton, central differences [19]; A, Bozeman and Dalton, upwind 
differences [19]; V, Nallasamy and Prasad [20]; 0, this study. 

file is equal to the negative of one half the vorticity in the center. The slope of BD 
implies a central vorticity of approximately 1.42 which is in disagreement with the 
value 1.83 given by Nallasamy and Prasad (NP) [20]. The present results yield values 
of approximately 2.1. 

Figure 11 compares the spread of the upstream stationary vortex with other work. 
Results for the case R = 10” compare favorably with others, however, the case of 
R = 400 is disappointingly low. It is thought that the interior mesh size of l/32 
is too crude to adequately represent the flow. 
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Figure 12 plots the position of the center of the main vortex as it varies with R. 
The results of the present work bring the vortex center closer to the center of the cavity 
than previous studies. 

Table I also includes approximate running times for the program once the number 
of vortices in I>, had stabilized. The program was written in unsophisticated 
LRLTRAN, the Livermore Laboratory version of FORTRAN: and was run on th.e 
CDC 7600 R and S machines. The program was compiled by the CHAT compiler 
and the timing was done with the aid of the subroutine OIZITIM. It should be noted 
that the times given in Table I give the total time needed to complete one entire time 
step. These times include such extraneous work as plotting the velocity field every 
time step. 

v. DISCUSSION OF ~SULTS 

The preceeding was a presentation of a numerical method for use in fluid flow 
problems with high Reynolds numbers. It is a hybrid combining a well known finite 
difference scheme with the newer vortex method [3]. The method has yielded accurate 
results on the square cavity flow problem, an example of steady circulating flow. 

As a hybrid method, it must simultaneously satisfy the requirements imposed on 
each individual scheme, as well as to any other restrictions imposed by the combination 
process. It is well known that the AD1 method is unconditionally stable when applied 
to linear problems. However, the author is unaware of stability conditions for the 
vortex scheme relating the time step k and the boundary discretization length h. 
Hence, one is forced to experiment. 

One confusing aspect of the vortex method is the apparent lack of satisfaction 
of the tangential boundary condition, u . s = 0. The velocity u does not include the 
necessary amount of vorticity along the boundary to cancel u . s. In fact, n represents 
the velocity outside the boundary layer and is thus useful to spot unexpected features 
such as back flow or separation. 

Although the numerical boundary layer can be evaluated at t = t, , it has a global 
eft’ect only at t = tm+l when it has been subdivided into vortex blobs and allowed 
IO diffuse. Roughly half of the blobs are immediately lost as they cross the boundary 
and are thus discarded from the computation. The other half travel too far with the 
current choice of parameters. The structure of the blobs inside the cut-off length, 
u (= /7/27i), was designed to have them exert a constant tangential velocity on G as 
they diffused normally into the fiuid. However, the diffusive component is a random 
step in time, and in a time duration of k, the blobs experience a random push with a 
variance of 2k/R. The parameters used imply that those blobs diffusing into the fluid 
travel beyond u after they have been created. Thus, although at the time of its creation 
the numerical boundary layer contained the correct amount of vorticity to cancel 
u * s at G, after diffusing in the form of blobs it may not be strong enough5 and the 
tangential boundary condition must be satisfied by the creation of another layer. 

Et may then be inquired if it is better to choose a smaller k, or larger o, i.e. larger h, 
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to obtain better results. Smaller time steps mean more vortices, hence longer running 
times. Another consideration was noted by Chorin [3]. The convective component 
in the vortex scheme is O(k), while the diffusive component depends on the standard 
deviation of the random walk and is thus O(kllB). Hence, as k is decreased, the diffusive 
component may dominate, or at least exert a greater influence, over the convective 
component making the flow look more random. On the other hand, increasing 0, 
hence h, means the boundary layer is subdivided into fewer blobs and is, therefore, 
a worse approximation. The entire intention is defeated, the tangential condition 
may be better satisfied, but only at fewer points along the boundary. 

It should be asked whether it is fair to demand fine detail from the vortex scheme 
near G. Fine detail is unavailable to finite difference methods anyway, unless one 
uses prohibitively small mesh sizes, or as proposed by Dorodnicyn [I] discretizes 
different approximations (boundary layer, ideal-fluid, etc.) in their corresponding 
areas. The method described here can be made more accurate by simultaneously 
decreasing k and d at the expense of greater demands of storage and computer time. 
The improvement in the satisfaction of the normal boundary condition can be easily 
judged by an examination of u * n along G. Although u along G represents flow 
outside the numerical boundary layer, it should be parallel to G. However, improve- 
ments in the satisfaction of the tangential boundary condition may be harder to 
judge and remains an open problem. 

The domain interaction imposes no profound considerations or restrictions. 
As presented here, no restriction arises from the flow of 4, into D, and only two 
criteria should be adhered to in regards to flow of f, into D, . First, the method 
assumes that vorticity cannot be convected in a normal direction much beyond 
one mesh size in a time duration of k/2. Secondly, the standard deviation of the random 
walk should not be so large as to allow too much vorticity to diffuse beyond one mesh 
size in a time k/2. Therefore, it is not permissible to decrease d without simultaneously 
decreasing k. 

Another consideration is what choice to make for 8, the distance from the interior 
domain, Dz , to the boundary, G. It is advantageous to expand D, as much as possible 
to minimize the number of vortices. However, one must allow room for the mesh 
expansion. The runs for R = 100, d = l/64, used 6 = 4d. Larger values of 6 were 
tried with no noticeable eftect on the velocities. 

The runs for R = 1000, d = l/32 were done to check whether a drastic difference 
could be observed by changing the mesh size. The results were not as sharp as those 
with d = l/64, but were enlightening in that they signalled that further resolution was 
required from the mesh. The coarse mesh produced a slight mismatching between the 
two subregions in the u-velocity profile near the sliding edge. This gave evidence that 
the truncation error of the AD1 method in the interior regions dominated the flow. 
The coarse mesh is also responsible for the different slopes of the v-velocity profiles 
for the two values of d, l/32 and l/64 (see Fig. 9). The slope of these lines is directly 
related to the amount of vorticity present in the interior and the diBerence between 
the two slopes gives further evidence to the artificial effects of the coarse grid on the 
solution. 
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The runs for -R = 400 were done using an interior mesh n = l/32 to check how 
the method performed on a problem with smaller R. The overail results were 
encouraging. one LE and v velocity profiles are given in Figs. 9 and 10 and the tr-profile 
is compared with Burggraf’s numerical results (Fig. 10). By comparing the u-profiles 
of R = I000 with those of R = 400, it is evident how the wa?l affects the interior 
solution for the lower Reynolds number. When R = 400, the spin of the large 
central core is slowed down earlier as the bottom wall is approached. The VISCOUS 

effects of the stationary wall have a braking influence on the rotation in the center. The 
location of the center of the central vortex is graphed in Fig. 12 and it lies further 
away from the cavity center than the one for R = 1000, d = l/64. 

The major disappojntments for the R = 400 runs were with the inability to con- 
sistently see the small scale phenomena, such as the counter-rotating vortices in the 
corners. As in the R = 1000, r! = f/32 case, the upstream corner vortex would appear 
as it is composed of vortex blobs of negative sign which were pushed into the corners. 
but at later time steps would disappear as these escaped through C. Since in the case 
R = 1000, d = l/64, the corner vortices did not exhibit such a behavior, it is con- 
jectured that the computational grid is responsible. A grid that is too coarse cannot. 
correctly interpret this small-scale motion. 

Running the program for R = 2000 proved costly. The program was written with 
the expectation that it would not be necessary to use an interior mesh size larger 
than d = I/64. However, this proved not to be the case. A total of 380 time steps 
were run experimenting with various h and k’s Using k = 0.08 and h = l/30 catised. 
instability; the interior vortex began to accelerate and large amounts of vorticity 
were introduced at each time step. Decreasing k to 0.05 removed the instability but 
a distinct grid effect could be seen. Even using Ic = 0.05, h = 1145 could not remove 
the obvious difhculties. ?here were large interior velocitites and a drastic mismatching 
of II, v-profiles from the domain B, with D1 . It is believed that a finer interior mesh 
must be used to get better results. It could then be said that the limitation of the 
proposed method lies not in the vortex method, nor in the combination process, but 
in the difference scheme itself. Even with the absence of areas of sharp gradients. 
the difierence method carries an inherent truncation error which exerts an increasing 
influence on problems of larger Reynolds numbers. 

It is the author’s conjecture that the early breakdown of difFerence methods occurs 
from the ina’bility to correctly interpret areas of sharp derivatives ivhich usual&i 
occur near boundaries. Therefore use of a scheme of the type proposed may allow 
one to solve problems with somewhat larger R, but eventually a limit In R will be 
reached when the truncation error of the difference method will dominate. 

It should be noted that little thought was given to the choice of the finite difference 
method for the interior region. The ADI method presented here was chosen because 
of its second order accuracy. Although methods using central differences do not 
introduce the artificial dif?usion present with upwind differences, they lead to linear 
equations that are more difficult to solve (see the comparison mads by Ref. fl?])~ 
Thus, another difference scheme may make the proposed hybrid method more 
applicable. However, in any combination process it is important to allow vorriciry 
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transfer from one region to the other. A version of the expanding scheme proposed 
here should be adaptable to other methods. 

The basic idea should be applicable in a wide class of flows. The domain of interest 
is subdivided into two subdomains, one bounded near the boundaries, and one away 
from the boundaries, possibly unbounded, depending on the problem. In the domain 
near the boundary the equations of motion are solved by the vortex method. In the 
other domain a suitable finite-difference method, or another method of a non-random 
type, can be chosen, with care taken if this domain is unbounded. 
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